Closing Thu:
10.3

Closing next Thu:
13.3(part 1)

Midterm 1 is Tuesday, Feb. 2 it covers
12.1-12.6, 10.1-10.3, 13.1-13.2
13.3(1) is about curvature.
(I will NOT ask about this on our midterm 1).

10.3 Polar Coordinates (continued)

Entry Task:
By plotting the following points, graph
$r=1+\sin (\theta)$

$\boldsymbol{\theta}$	\boldsymbol{r}	$\boldsymbol{\theta}$	\boldsymbol{r}
0		π	
$\pi / 4$		$5 \pi / 4$	
$\pi / 2$		$3 \pi / 2$	
$3 \pi / 4$		$7 \pi / 4$	

Note: $\quad 1+\sqrt{2} / 2 \approx 1.71$

$$
1-\sqrt{2} / 2 \approx 0.29
$$

Finding $d y / d x$:

Recall, in polar we always know that

$$
x=r \cos (\theta) \text { and } y=r \sin (\theta)
$$

So, if $r=f(\theta)$,
then $\quad x=r \cos (\theta)=f(\theta) \cos (\theta)$

$$
y=r \sin (\theta)=f(\theta) \sin (\theta)
$$

This is a parametric equation for x and y !
From what we learned about parametric equations:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}
$$

which is often written as:

$$
\frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin (\theta)+r \cos (\theta)}{\frac{d r}{d \theta} \cos (\theta)-r \sin (\theta)}
$$

Example (from an old midterm):
Consider $r=3-6 \sin (\theta)$ (shown below)

(a) Find the y-intercepts.
(b) Find the equation for the tangent line at $\theta=\pi$.
(Put your answer in the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$)

Parametric Example (more old exams):
Consider the curve given by

$$
x=t^{3}-4 t, y=5 t^{2}-t^{4}
$$

The curve intersects the positive y-axis at the same y-intercept twice. Find the two different tangent slopes at this point.

13.3 (part 1) Curvature

The curvature at a point, K, is a measure of how quickly a curve is changing direction at that point.

We want to define

$$
\mathrm{K}=\frac{\text { change in direction }}{\text { change in arc length(distance })}
$$

Roughly, how much does your direction change if you move "one inch" along the curve?
Let

$$
\overrightarrow{\boldsymbol{T}_{\mathbf{1}}}=\text { unit direction vector at the point }
$$

$$
\overline{\boldsymbol{T}_{2}}=\text { unit direction vector one inch later }
$$ So

$$
K \approx\left|\frac{\overrightarrow{T_{2}}-\overrightarrow{T_{1}}}{\text { one inch }}\right|=\left|\frac{\Delta \vec{T}}{\Delta s}\right|
$$

We define curvature to be the limit as the distance goes to zero, which gives

$$
K=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|
$$

Example (the long way):
Consider $\mathrm{x}=\mathrm{t}, \mathrm{y}=\cos (\mathrm{t}), \mathrm{z}=\sin (\mathrm{t})$
(1) Write the function for arc length
(2) Reparameterize in terms of arc length.
(3) Find the unit tangent with respect to s
(4) Find the curvature.

First Shortcut:

$$
K=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}} / d t}{d s / d t}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}
$$

Faster Shortcut:

$$
K=\left|\frac{d \stackrel{\rightharpoonup}{\boldsymbol{T}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}
$$

Explanation of short cut:
First note: $\overrightarrow{\boldsymbol{T}}$ and $\overrightarrow{\boldsymbol{T}}^{\prime}$ are always orthogonal.
Proof:
Since $\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}=|\overrightarrow{\boldsymbol{T}}|^{2}=1$, we can differentiate both sides to get

$$
\overrightarrow{\boldsymbol{T}}^{\prime} \cdot \overrightarrow{\boldsymbol{T}}+\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0 .
$$

So $2 \overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0$ and $\overrightarrow{\boldsymbol{T}} \cdot \overrightarrow{\boldsymbol{T}}^{\prime}=0$.

Since $\overrightarrow{\boldsymbol{T}}(t)=\frac{\overrightarrow{\boldsymbol{r}}^{\prime}(t)}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|}$, we can write

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(t)=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| \overrightarrow{\boldsymbol{T}}(t) .
$$

Differentiating and using the product rule:

$$
\stackrel{\rightharpoonup}{\boldsymbol{r}}^{\prime \prime}(t)=\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right|^{\prime} \stackrel{\rightharpoonup}{\boldsymbol{T}}(t)+\left|\overrightarrow{\boldsymbol{r}}^{\prime}(t)\right| \overrightarrow{\boldsymbol{T}}^{\prime}(t)
$$

Taking the cross-product of both sides with $\overrightarrow{\boldsymbol{T}}$:

$$
\begin{gathered}
\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{\prime}(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}})+\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right) \text {, so } \\
\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \times \vec{r}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left(\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right),
\end{gathered}
$$

(because $\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}=\langle 0,0,0\rangle$, tell me why?)
taking the magnitude

$$
\begin{aligned}
& \frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|}=\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|\left|\overrightarrow{\boldsymbol{T}} \times \overrightarrow{\boldsymbol{T}}^{\prime}\right|, \text { and } \\
& \frac{\vec{r}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{2}}=|\overrightarrow{\boldsymbol{T}}|\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right| \sin \left(\frac{\pi}{2}\right), \text { tell me why? }
\end{aligned}
$$

Thus,

$$
\left|\overrightarrow{\boldsymbol{T}}^{\prime}\right|=\frac{\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{2}}
$$

Therefore $K=\left|\frac{d \overrightarrow{\boldsymbol{r}}}{d s}\right|=\frac{\left|\overrightarrow{\boldsymbol{T}}^{\prime}(t)\right|}{\left|\overrightarrow{r^{\prime}}(t)\right|}=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overline{\vec{r}}^{\prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}}$

Note:

To find curvature for a function $y=f(x)$ in 2D, we can form a 3D vector function

$$
\begin{aligned}
\overrightarrow{\boldsymbol{r}}(x) & =\langle x, f(x), 0\rangle \\
\text { so } & \begin{aligned}
\overrightarrow{\boldsymbol{r}}^{\prime}(x) & =\left\langle 1, f^{\prime}(x), 0\right\rangle \quad \text { and } \\
\overrightarrow{\boldsymbol{r}}^{\prime \prime}(x) & =\left\langle 0, f^{\prime \prime}(x), 0\right\rangle \\
\left|\overrightarrow{\boldsymbol{r}}^{\prime}(x)\right| & =\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \\
\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime} & =\left\langle 0,0, f^{\prime \prime}(x)\right\rangle
\end{aligned} \text { 俍 }
\end{aligned}
$$

Thus,

$$
K(x)=\frac{\left|\overrightarrow{\boldsymbol{r}}^{\prime} \times \overrightarrow{\boldsymbol{r}}^{\prime \prime}\right|}{\left|\overrightarrow{\boldsymbol{r}}^{\prime}\right|^{3}}=\frac{\left|\boldsymbol{f}^{\prime \prime}(x)\right|}{\left(\mathbf{1}+\left(\boldsymbol{f}^{\prime}(\boldsymbol{x})\right)^{2}\right)^{3 / 2}}
$$

